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Abstract

We introduce a penalized maximum likelihood approach for ranking all NCAA Division

1-A college football teams. The model does not consider margin of victory and is based

solely on win/loss data. Despite the simplicity, the model leads to rankings which exhibit

greater agreement with expert opinion (i.e. AP and Coaches polls) than the models his-

torically and currently used by the Bowl Championship Series (BCS). The model can be

implemented using standard statistical software packages.
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1. INTRODUCTION

Prior to 1998, the national championship of US Division 1-A college football was based

solely on two opinion polls, commonly referred to as the Coaches and the AP (Associated

Press) polls. The ranking of the teams in these two polls is determined by coaches and sports

writers respectively who vote weekly for the top 25 teams based on the teams’ performances

in all games played. Up until 1998, the team that finished the year in the number one position

in both polls was deemed to be the national champion. In cases in which the two polls did

not agree on the choice of the top team, the two teams involved shared the title of national

champion, which occurred most recently in 1997 with Michigan and Nebraska.

With the 1998 season came the inception of a new system under which the top two teams

at the end of the season would play one final game for the championship, thereby eliminating

the possibility of a shared title. This new system was called the Bowl Championship Series,

or BCS. The BCS system employed rankings produced by a number of computer models in

addition to the rankings of the AP and Coaches polls in order to determine the top two teams.
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The purpose of these computer models was to lessen dependence on the AP and Coaches polls

which, although historically trusted as representing expert opinion, have often been criticized

on the following two accounts. First, the human pollsters are not objective observers and

may have biases toward certain schools based on regional loyalty, historical perception, etc.

Secondly, it is impossible for a human pollster to recall all outcomes of all games involving

the 117 Division 1-A teams over the course of an 11 to 14 week season, even if he or she had

witnessed or read about every game.

Although the computer models employed by the BCS do not have any such bias and are

able to consider the outcomes of all games played, they have also proven to be extremely

controversial as a result of many instances in which they produced nonintuitive rankings which

differed significantly from the AP and Coaches polls. For instance, in 2001 the University

of Oregon which finished 2nd in both the AP and Coaches polls, finished 8th in one of the

eight BCS computer models and 7th in two of the others. The low ranking of Oregon in

these three computer polls was thought to be attributable to their many victories by narrow

point margins, since the four BCS computer models that did not use margin of victory ranked

Oregon no lower than third. This was not the first time that controversy resulted from the

computers polls weighing margin of victory much more heavily than public opinion, and as a

result it was mandated that all computer polls either ignore margin of victory or be excluded

from the BCS system beginning in 2002. The idea was that by forcing computers to ignore

margin of victory, the resulting rankings would be more consistent with the public’s opinion,

which tends to be more a function of a team’s winning percentage and quality of opposition

than a function of the point margins. Furthermore, this would remove any incentive for a team

to “run up the score” in a game that is a foregone conclusion, which is universally considered

to be bad sportsmanship.

It should be noted that the belief that the BCS computer models are more influenced by

margin of victory than public opinion is not shared by everyone. Some people, including the

creators of some of these computer models, would argue the human pollsters themselves can

be highly influenced by large victory margins, citing examples in which a team that wins by

a large margin climbs higher in the polls than a team that wins by a small margin. While it

is in fact possible for human pollsters to be influenced in such a way, a number of instances

similar to the one involving Oregon described above were enough to convince the BCS that

the computer polls tended to weigh margin of victory too heavily (even after a restriction was

made limiting the maximum margin to 21 points). Further evidence that human pollsters tend
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to put relatively small weight on margin of victory is given by Harville (2003), who noted

that the version of his model which ignores margin of victory agreed more strongly with the

human pollsters for the football season he considered. Sentiment for eliminating margin of

victory from the computer polls also arose as a result of the fact that a computer poll cannot

discern between a large margin of victory resulting from one team dominating another for an

entire game versus a large victory margin as a result of a large amount of scoring occurring

after the game has already effectively been decided. A human pollster, on the other hand, can

differentiate these two situations.

In this article we examine the problem of constructing a computer model to rank the

(currently) 117 Division 1-A football teams without using victory margins. A new computer

model is proposed that is shown to produce rankings which on average agree more strongly

with the AP and Coaches polls than the models used by the BCS as well as other competing

models. The proposed model uses a penalized likelihood approach which results in a ranking

process that attempts to mimic the thought processes of the human pollsters of the AP and

Coaches polls. The paper is organized as follows. Section 2 gives a simple example illustrating

the complexities involved in ranking teams without using victory margins. Section 3 describes

some of the models used in the statistics literature for ranking football teams. Section 4

discusses the models that are or have been used by the BCS. Sections 5 and 6 present the

proposed model and discuss its implementation using statistical software. Section 7 compares

the rankings produced by the proposed model to those of some competing models, including

the BCS computer models. Section 8 describes some possible modifications to the model.

2. A SIMPLE EXAMPLE

To illustrate the complexity in fairly ranking teams based solely on win/loss data, consider

the following season in which 5 teams (A, B, C, D, and E) played a total of 8 games with the

following outcomes:

Game 1: Team A defeated Team C Game 2: Team A defeated Team E

Game 3: Team B defeated Team A Game 4: Team B defeated Team E

Game 5: Team C defeated Team D Game 6: Team C defeated Team E

Game 7: Team D defeated Team E Game 8: Team D defeated Team E

Team B finishes the season with a win/loss record of 2 wins and zero losses (denoted 2-0),

Team E finishes with a record of 0-5, and Teams A, C, and D all finish with records of 2-1.
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Now suppose no scores are available and we seek to fairly rank the five teams based only on

the above outcomes. We can judge the strength of each team based on its win/loss record

as well as on the strength of its opponents, who in turn are judged based on their win/loss

records and the strength of their opponents, and so on. An argument for ranking these five

teams may go as follows.

Team B should be ranked as the first place team, having no losses and having defeated

team A, who is a strong opponent since if not for being defeated by team B, would have no

losses. Team E should be ranked as the worst team, having no wins and having loss to team

D twice, who is a weak opponent since if not for defeating team E (twice) would have no wins.

Teams A, C, and D remain to be ranked from 2nd to 4th. Although all three have the same

record of 2-1, Team A should be ranked 2nd since their only loss came to team B, who is a

strong opponent since they are the number one team. Finally, Team C should be ranked above

team D since team C defeated team D while team D defeated only team E, who is a weak

opponent since they are ranked as the worst team. Thus the ranking of the teams from first

to last should be B, A, C, D, and E.

While such an argument is tractable for the five teams playing eight games in the example,

for the 117 Division 1-A teams who each play 11 to 14 games on average the problem becomes

extremely difficult for a human pollster to handle. The voters of the AP and Coaches polls

attempt to reason in a similar fashion as above, but it is impossible for them to simultaneously

consider all games played. This is the motivation for developing a computer model that can

simultaneously judge the strength of all 117 teams based on winning percentage and strength

of opposition.

3. FOOTBALL RANKING MODELS IN THE STATISTICAL LITERATURE

A number of articles exist in the statistics literature dealing with the ranking of college

football teams. Many of these use a linear model approach in which margin of victory is mod-

elled as a function of the two competitors in each game as well as a number of covariates. For

instance, Harville (1977) proposed a linear model which considered as covariates the location

of the game (i.e. which team was the home team), the date of the game, and the division

membership of the two teams involved in each game. In order to downplay victories by large

margins he also considered two variations on this model, one in which the margin of victory was

truncated at 15 points and one in which the margin of victory was truncated at 1 point. Note

that latter model in essence ignores margin of victory and as such offers a possible solution
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to the problem of interest in this paper. Results from Harville’s models will be considered in

Section 7. In addition to truncating margin of victory at a certain value as Harville did, other

approaches to downplaying the effect of large victory margins in linear models are offered by

Stern (1992) and Bassett (1997). In Stern’s (1992) model a smaller weight was given to games

in which the victory margin was large, while Bassett (1997) proposed using absolute error as

opposed to least squares.

In addition to linear model approaches, likelihood based approaches can also be found in the

statistics literature. Keener (1993) considered a number of models for ranking college teams,

including a version of what is often called the Bradley-Terry model after a paper dealing with

paired comparisons for experimental design (Bradley and Terry 1952). In this model, each

Team i is assigned a parameter θi that can be thought of as representing its strength. The

probability that team X defeats team Y is then given by θX

θX+θY
, and the estimates for the θi

values can then be obtained by maximizing the likelihood over all the game outcomes for the

entire season. Ordering the MLE estimates for the θi values then determines a ranking of the

teams. While in his model Keener used a weighting factor to weigh large margins of victory

more than close victories, it is not necessary.

It is important to note that a problem with the Bradley-Terry model is that if team i has

no losses, the likelihood becomes larger as θi becomes larger. It follows that the maximum

likelihood estimator for the θi value of any undefeated team is infinity. As a consequence, the

model will produce a tie for first among all undefeated teams. This is problematic due to the

substantial variability in the strength of opponents among the different Division 1-A teams.

It is undesirable to restrict all teams with at least one loss to be ranked below all undefeated

teams. Moreover, a two- or three-way tie for first is a rather unsatisfactory answer to the

question of who is number one. Keener applies the model to a season in which all teams have

at least one loss so that this is not a problem; however, for general use the model would need

to be modified since it is not uncommon to have one or more undefeated team in Division 1-A

football.

A different likelihood based approach was proposed by Thompson (1975) for ranking the

professional teams of the National Football League (NFL). Similar to the model above, each

team i was assigned a strength parameter θi, but in this model the probability that team

X defeated team Y was given by Φ(k(θX − θY )) where θX and θY are the θi parameters for

teams X and Y respectively and Φ is the standard normal cumulative distribution function.

The reason for the inclusion of the parameter k in the model is that Thompson restricted
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the values for the θi’s to be the integers 1, ..., n where n is the number of teams. While this

restriction eliminates the problems associated with undefeated teams described in the above

paragraph, it also makes maximization of the likelihood extremely difficult, requiring a search

over n! possibilities. Thompson avoids this problem by further restricting that no team can

be ranked below a team having a lower winning percentage. While such a restriction may

be reasonable for the teams of the NFL who play schedules that are relatively comparable

in difficulty, such a restriction is undesirable when ranking college football teams due to the

variability in the schedule strengths mentioned above. Note that the use of the normal CDF

for paired comparisons can be traced back to Thurstone (1927).

4. COMPETING MODELS USED BY THE BCS

In the five years of existence up to the time of the writing of this article, ten different models

have been used by the BCS for ranking the Division 1-A college football teams. Moreover,

some of these ten models have been modified during this period. Due to the large number

of models and the fact that in some cases the technical details regarding the models are not

public, we will not give descriptions of each specific model. Instead, we will evaluate these

models based on the rankings they produced for the specific football seasons during which

each model was included in the BCS. This will be done in Section 7. While we do not provide

a description of each BCS model, it should be noted that the BCS models cover a wide range

of complexity. Some models take into account only win/loss data while others consider such

factors as location, date, rankings from previous seasons, and margin of victory (prior to 2002).

5. THE PROPOSED MODEL

To begin, let us suppose the intrinsic performance level of each team i varies from day

to day according to a normal distribution with mean θi and variance of 1/2 (for simplicity).

Treating the performance level as random is consistent with the fact that even very good

teams can be be “upset” by weaker teams. The use of the normal distribution was used largely

because it results in a model that produces reasonable rankings, but it can also be motivated

by supposing that the performance level is a sum of a large number of independent factors and

invoking the central limit theorem. Further suppose that this intrinsic performance level of

each team is independent of its opponent’s level and that every game is won by the team that

has the greater performance level on that day. Under these assumptions the probability that
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team X defeats team Y is Φ(θX − θY ), similar to the Thompson model described earlier. Note

that the same expression also arises from the model of Harville (2003) by supposing that the

difference in the score when team X plays team Y is normal with mean θX − θY and variance

1 and that only win/loss data is available. However, we prefer the interpretation of the θi

parameter as a mean performance level rather than a mean score for modelling win/loss data.

This is the basic idea behind our likelihood which is given in its entirety for the n teams by

l(θ) =
∏

(i,j)∈S

[Φ(θi − θj)]
nij

︸ ︷︷ ︸

Part 1

×

Part 2
︷ ︸︸ ︷
n∏

i=1

Φ(θi)Φ(−θi)×Φ(θn+1)Φ(−θn+1)×
∏

(i,j)∈S∗

[Φ(θi − θj)]
nij

︸ ︷︷ ︸

Part 3

and discussed in detail in the following paragraphs. This likelihood function l(θ) is maximized

as a function of θ = (θ1, ..., θn+1) where θn+1 is a nuisance parameter. We will rank the teams

according to the MLE’s of their respective θi values such that the team with the largest value

of θi is ranked as the top team.

Part 1 of the likelihood captures the motivation from the first paragraph in this section

where we proposed that the probability that team X defeats team Y is Φ(θX − θY ). For Part

1 we define the set S to consist of all ordered pairs (i, j) for which team i defeated team j and

both team i and team j are members of Division 1-A. The value nij is the number of times

team i defeated team j. Tie games are counted as half a win and half a loss.

In the maximization of Part 1, a team earns a large value of θi by defeating other teams

who themselves have earned relatively large θi values. In this way, maximization of Part 1

simultaneously judges the strength of each team based on its win/loss record and based on the

strength of its opponents, which is in turn determined based on their win/loss records and the

strength of their opponents. Thus, the process of maximizing Part 1 alone mimics the thought

processes a human would attempt to use to rank the teams as described in Section 2. However,

there are a couple of problems with using Part 1 alone.

The first problem is the difficulty mentioned earlier in conjunction with the Bradley-Terry

model. That is, if a team i has no losses, Part 1 increases without bound as θi becomes larger

so that the MLE for any undefeated team is infinite. To solve this problem we penalize the

likelihood by multiplying by Πn
i=1Φ(θi)Φ(−θi) as given by Part 2. For more discussion on

estimation based on penalized likelihood the reader is directed to Green (1998) and Silverman

(1985).

While the main reason for using the penalty term above is that it restricts the MLE

estimates of the θi’s to be finite, it will also be shown that it leads to rankings which consistently
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agree with human polls (i.e. AP and Coaches polls). Furthermore, the use of this penalty

term is easily justified. Two justifications for the penalty term are given in the following two

paragraphs.

One way to view the penalty term is as Bayesian prior distribution. To illustrate this we

will associate with a team X the parameter ξX defined by ξX = Φ(θX). Note that these ξ

parameters can be thought of as the probability of defeating a team with a θi value of zero.

Now if we treat the unpenalized likelihood described before as the conditional distribution of

the game outcomes given the ξ’s and assign independent Beta distributions with parameters

α and β as the prior for the ξ of each team, the posterior of the ξ’s is proportional to the

unpenalized likelihood and

Πn
i=1ξ

α−1
i (1− ξi)

β−1 = Πn
i=1Φ(θi)

α−1(1− Φ(θi))
β−1.

Taking α = β = 2 gives the likelihood proposed. The motivation for taking α = β is to give

an equal prior probability of winning and losing for each team, while the choice of the value 2

for these two parameters was selected after testing the model on actual football seasons.

A second way to view the penalty term is by considering one additional “virtual” team

with a θi value of zero. Giving every team exactly one win and one loss to this virtual team

also results in a likelihood with the penalty term proposed. (Note that in general one could

give α − 1 wins and β − 1 losses to this virtual team.) Viewing the penalty term in this way

makes it clear how the problems presented by undefeated teams are solved, since when the

virtual team is considered each team actually has at least one loss. Furthermore, this view of

the penalty term also suggests why it is simple to fit the model using existing binary response

regression procedures to be described in Section 6.

Finally, maximization of the product of Parts 1 and 2 will produce an adequate ranking of

the teams, but without using Part 3 we would be ignoring all games in which one opponent

was a member of Division 1-A but the other was not (recall the set S does not include such

pairings). Since such games are not extremely common, it is not unreasonable to ignore such

games. In fact, the BCS computer model of Wes Colley does exactly that. However, it is

foreseeable that this could lead to considerable controversy if, say, a certain team’s only loss

was to a non-Division 1-A opponent. In such a case, ignoring this loss would make this team

undefeated and ranked as one of the best teams, despite having a loss to an extremely weak

opponent. In place of ignoring these games, another solution would be to expand the set S

to include all games of any team who has played a Division 1-A team. However, these extra

games would involve yet another set of teams for which we would be ignoring games against
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opponents not in the set. Thus, unless we are willing to rank almost all college football teams

in the nation, a different solution must be found.

The solution that was chosen is to combine all teams not in Division 1-A who play a Division

1-A opponent into one generic n+ 1st team. The set S∗ is then taken to be all ordered pairs

(i, j) for which team i defeated team j and one of i or j is equal to n + 1 and the other is

in {1, .., n}. The term
∏

(i,j)∈S∗ [Φ(θi − θj)]
nij in Part 3 of the likelihood then accounts for all

games involving Division 1-A teams that were not included in the set S. As before, the nij

are the number of times team i defeated team j. Note that most of the games in the set S∗

are losses for the generic non-Division 1-A team, and as such θn+1 invariably has a very small

MLE value. Thus, the reward for a Division 1-A team beating a team not in Division 1-A is

very small while a loss to a non-Division 1-A has a strong negative effect on the ranking, as

should be the case. Finally, the term Φ(θn+1)Φ(−θn+1) is included in Part 3 to penalize the

likelihood of this generic n+ 1st team just as Part 2 did for the other n teams.

6. IMPLEMENTATION OF THE MODEL USING STATISTICAL SOFTWARE

Standard statistical software packages can be used to maximize the likelihood function

for the model by fitting a binary regression model employing the probit link function. The

procedure for doing this is similar to the method used by Fienberg and Larntz (1976) for

fitting the Bradley-Terry model. The data matrix should consist of one column for each team

in Division 1-A as well as one additional column to represent the generic non-Division 1-A

team. For each game played involving at least one Division 1-A team, a row is included in the

data matrix in which the value 1 is placed in the column for the winner of the game and a -1

is placed in the column for the loser of the game while the values for the other columns are all

set to zero. In addition to these rows, the data matrix should also contain two additional rows

for each team. For any given team these two rows are as follows. The first row should contain

a 1 in the column for that team with the rest of the entries being zero, while the second row

should contain a -1 for that team with the rest of the values being zero. These two additional

rows provide the penalty term for the likelihood. Finally, the response vector should be set to

a vector of all 1’s equal in length to the number of rows in the data matrix.

If a probit regression model with no intercept is fit to the data matrix and response vector

constructed in this way it can be verified that the likelihood being maximized is exactly the like-

lihood for the proposed model. As such, the parameter estimates output from the software cor-

responding to each of the different columns of the data matrix will be the maximum likelihood
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estimates for the θi’s in the proposed model. Thus, the single parameter estimate for the generic

non-Division 1-A team can be discarded and the remaining values can be used to rank all the

Division 1-A teams. Code for implementing this procedure in SAS for the example presented

in Section 2 can be found at http://members.accesstoledo.com/measefam/SAScode.html.

Note that if tie games exist in the data the above procedure must be modified slightly

since not all nij will be integers. In these cases, each row in the data matrix described above

that does not correspond to a tie game should be entered twice, while rows corresponding to

tie games should still be entered only once. In this way the likelihood being maximized is

proportional to the square of the desired likelihood, and the ranking of the teams produced

will be correct.

7. RESULTS AND COMPARISONS WITH COMPETING MODELS

In this section we will examine the rankings resulting from the competing models introduced

earlier. We will compare these rankings to those of the proposed model in terms of similarity

to the AP and Coaches Polls. This similarity will be quantified in terms of the average absolute

difference between the rankings of each model and the average ranking of the AP and Coaches

Polls, although one may argue that a measure which gives large differences smaller weight (or

larger weight) than does the absolute value function may be more appropriate.

Harville (1977) gave his rankings for the 1975 college football season. These rankings are

included in Table 1 along with the rankings for the model proposed in this paper (“Mease”).

The teams listed are the top 15 teams in terms of average rankings of the AP and Coaches

Polls (“Poll Avg.”). The three columns listed for Harville’s model correspond to the original

model (“no cap”) as well as the two models in which the margin of victory is limited to 15

points and 1 point. The final row in the table gives the average absolute difference between

the rankings for each model and the AP and Coaches average rankings for the 15 teams. From

these values it can be seen that for the 1975 season the proposed model agrees more closely

with the AP and Coaches Polls than the “15 point” and “no cap” Harville models, while the

“1 point” Harville performs better than the proposed model with regard to average absolute

difference from the AP and Coaches Polls.

Keener (1993) gave rankings based on his model for the 1989 college football season. Table

2 gives these rankings for the top 15 teams as determined by the average of the AP and Coaches

Polls for 1989 (“Poll Avg.”). From this table it can be seen that the model proposed in this

paper has an average absolute ranking difference of 1.60 from the AP and Coaches average
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rankings. By comparison, the Keener model has an average difference of 2.87 and as such did

not perform as well in terms of similarity to the AP and Coaches Polls as the model proposed

in this paper. It is also interesting to note that Houston, the second ranked team in the Keener

model, is not included in the table since it was not ranked by the Coaches Poll, which only

ranked 20 teams at that time. The model proposed in this paper ranked Houston as 15th,

which is similar to their AP ranking of 14th.

Table 1: Comparison to Harville’s Models (1975 Season)

Harville Harville Harville

Poll Avg. Team Record (Wins-Losses-Ties) Mease 1 point 15 point no cap

1 Oklahoma 11-1-0 2 1 6 3

2 Arizona State 12-0-0 1 2 9 14

3 Alabama 11-1-0 5 3 4 1

4 Ohio State 11-1-0 3 4 2 2

5 UCLA 9-2-1 16 16 16 15

6.5 Texas 10-2-0 7 7 3 5

6.5 Arkansas 10-2-0 9 10 5 6

8 Michigan 8-2-2 13 19 14 8

9 Nebraska 10-2-0 6 5 7 4

10 Penn State 9-3-0 12 9 10 11

11.5 Texas A&M 10-2-0 10 6 12 12

12 Maryland 9-2-1 27 23 15 17

14 Miami(Ohio) 11-1-0 8 8 25 26

14 Pitt 8-4-0 21 13 13 7

14.5 California 8-3-0 15 18 22 22

0 Avg. Abs. Diff. 3.93 3.67 4.13 4.53

Table 2: Comparison to Keener’s Model (1989 Season)

Poll Avg. Team Record Mease Keener

1 Miami(Florida) 11-1-0 2 1

2.5 Notre Dame 12-1-0 1 3

2.5 Florida State 10-2-0 5 5

4 Colorado 11-1-0 3 7

5 Tennessee 11-1-0 4 11

6 Auburn 10-2-0 9 8

7.5 Michigan 10-2-0 8 9

8 Alabama 10-2-0 6 12

8.5 Southern California 9-2-1 10 4

10 Illinois 10-2-0 7 14

11.5 Nebraska 10-2-0 14 13

11.5 Clemson 10-2-0 11 6

13 Arkansas 10-2-0 13 17

15 Penn State 8-3-1 16 18

16 Michigan State 8-4-0 19 15

0 Avg. Abs. Diff. 1.60 2.87
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The final tables listed give comparisons with the BCS models. Tables 3-7 give the rankings

for the BCS models for the five college football seasons beginning in the years 1998, 1999,

2000, 2001 and 2002 respectively along with the rankings for the model proposed in this paper

(“Mease”). The rankings for all models as well as the average of the AP and Coaches Polls

(“Poll Avg.”) exclude the bowl games played at the end of the season. This was done since the

primary function of the BCS is to select teams to participate in these bowl games. The teams

included in Tables 3-7 are the top 15 teams as computed by the overall BCS ranking system

prior to the bowl games and are listed in the order of these overall BCS rankings.

From Table 3 it can be seen that the model proposed in this paper outperformed two of

the three models used by the BCS in 1998 in terms of average absolute difference from the

AP and Coaches average ranking. In Tables 4-6 the proposed model outperformed 3, 7 and

7 of the eight models used in the years 1999, 2000, and 2001 respectively and Table 7 shows

the proposed model outperformed 4 of the seven models used in 2002. Table 8 summarizes

the average absolute ranking differences from the AP and Coaches average rankings over the

five seasons in which the BCS existed. From this comparison it can be seen that the model

proposed in this paper in fact had the smallest average difference from the AP and Coaches

average over the five year period among all BCS models.

Table 3: Comparison to 1998 BCS Models

Jeff New York Anderson/

Poll Avg. Team Record (Wins-Losses) Mease Sagarin Times Hester

1 Tennessee 12-0 1 2 2 1

2 Florida State 11-1 2 3 1 2

4 Kansas State 11-1 4 1 5 4

3 Ohio State 10-1 8 6 3 7

5.5 UCLA 10-1 3 4 6 3

8.5 Texas A&M 11-2 5 5 4 6

5.5 Arizona 11-1 6 9 9 5

7 Florida 9-2 10 8 11 10

8.5 Wisconsin 10-1 9 10 10 9

10 Tulane 11-0 7 14 23 8

15 Nebraska 9-3 11 7 15 11

12.5 Virginia 9-2 15 18 17 13

11 Arkansas 9-2 14 12 22 17

13 Georgia Tech 9-2 16 20 12 16

17.5 Syracuse 8-3 24 16 7 24

0 Avg. Abs. Diff. 2.47 3.07 3.80 2.33
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Table 4: Comparison to 1999 BCS Models

Jeff New York Anderson/ Richard Kenneth Herman David

Poll Avg. Team Record Mease Sagarin Times Hester Billingsley Dunkel Massey Mathews Rothman

1 Florida State 11-0 1 1 1 1 1 1 1 1 1

2 Virginia Tech 11-0 2 2 2 3 2 2 2 2 2

3 Nebraska 11-1 3 3 4 2 3 3 3 3 3

5.5 Alabama 10-2 4 6 3 4 5 7 6 4 4

5.5 Tennessee 9-2 9 5 5 8 7 6 5 5 6

7 Kansas State 10-1 6 4 6 5 4 5 4 6 5

4 Wisconsin 9-2 13 7 8 12 8 4 7 11 9

8 Michigan 9-2 8 9 7 6 10 9 8 7 10

9 Michigan State 9-2 7 8 10 7 6 8 9 8 8

10 Florida 9-3 10 11 16 9 9 12 12 9 7

15 Penn State 9-3 11 10 20 11 11 10 10 10 11

11 Marshall 12-0 5 13 11 15 33 31 11 22 12

12 Minnesota 8-3 24 15 21 21 14 19 17 15 15

15.5 Texas A&M 8-3 16 17 15 14 13 16 15 19 16

16 Texas 9-4 14 14 21 13 17 13 16 14 13

0 Avg. Abs. Diff. 2.77 1.57 2.43 2.83 3.10 2.90 1.30 2.50 1.77

Table 5: Comparison to 2000 BCS Models

Jeff New York Anderson/ Richard Kenneth Herman David

Poll Avg. Team Record Mease Sagarin Times Hester Billingsley Dunkel Massey Mathews Rothman

1 Oklahoma 12-0 1 3 3 1 1 3 2 2 1

3 Florida State 11-1 2 1 1 3 2 1 1 1 2

2 Miami(Florida) 10-1 3 2 2 4 3 2 3 3 3

4 Washington 10-1 4 8 5 2 10 11 5 4 4

5.5 Virginia Tech 10-1 6 5 4 6 5 5 4 7 7

5.5 Oregon State 10-1 5 7 8 5 7 9 8 5 5

7 Florida 10-2 7 6 6 7 4 4 7 6 9

8.5 Nebraska 9-2 9 4 10 9 6 13 6 8 6

10 Kansas State 10-3 11 9 12 12 8 12 11 11 8

9.5 Oregon 9-2 8 14 15 8 12 17 14 9 11

10 Notre Dame 9-2 10 16 8 10 14 15 15 10 12

12 Texas 9-2 15 10 11 15 11 6 9 12 10

16 Georgia Tech 9-2 12 11 7 11 9 8 10 13 14

14.5 TCU 10-1 14 12 20 20 16 7 12 14 15

14.5 Clemson 9-2 13 15 19 13 13 21 13 15 13

0 Avg. Abs. Diff. 1.00 2.47 2.73 1.60 2.33 4.33 2.33 0.87 1.33
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Table 6: Comparison to 2001 BCS Models

Anderson/ Wes Richard Kenneth David Jeff Herman Peter

Poll Avg. Team Record Mease Hester Colley Billingsley Massey Rothman Sagarin Mathews Wolfe

1 Miami (Florida) 11-0 1 1 1 1 1 1 1 1 1

4 Nebraska 11-1 2 2 2 2 3 2 3 2 2

3 Colorado 10-2 4 4 5 4 4 5 5 5 3

2 Oregon 10-1 3 3 3 3 2 8 7 6 7

5 Florida 9-2 7 9 8 7 8 4 2 3 5

8 Tennessee 10-2 5 5 4 8 6 7 8 7 4

9 Texas 10-2 8 8 9 10 9 3 4 4 6

7 Illinois 10-1 6 7 6 6 12 13 12 10 12

11 Stanford 9-2 10 6 7 11 5 9 9 8 8

6 Maryland 10-1 9 14 10 5 10 11 11 14 11

10 Oklahoma 10-2 11 10 11 9 13 6 6 9 9

13 Washington State 9-2 12 12 12 12 7 10 10 11 10

12 LSU 9-3 15 11 13 14 14 12 18 13 14

14 South Carolina 8-3 18 20 19 19 17 17 23 23 17

20.5 Washington 8-3 16 13 15 15 11 16 25 17 13

0 Avg. Abs. Diff. 1.90 2.70 2.30 1.57 3.03 3.03 3.63 3.10 2.90

Table 7: Comparison to 2002 BCS Models*

Anderson/ Wes Richard Kenneth New York Jeff Peter

Poll Avg. Team Record Mease Hester Colley Billingsley Massey Times Sagarin Wolfe

1 Miami (Florida) 12-0 2 2 1 1 1 1 1 2

2 Ohio State 13-0 1 1 2 2 2 3 2 1

4 Georgia 12-1 3 3 3 3 4 4 3 3

5 USC 10-2 4 5 4 6 3 2 4 4

3 Iowa 11-1 5 4 5 5 8 5 5 5

7 Washington State 10-2 8 8 8 9 5 9 6 6

8 Oklahoma 11-2 6 7 7 4 7 6 8 7

6 Kansas State 10-2 11 14 12 11 10 7 11 10

11.5 Notre Dame 10-2 7 6 6 8 6 13.5 7 8

9 Texas 10-2 9 10 9 7 11 11 9 11

11.5 Michigan 9-3 10 9 10 16 9 8 10 9

10 Penn State 9-3 13 11 13 14 14 10 15 13

13.5 Colorado 9-4 15 13 15 22 13 16 13 15

15.5 Florida State 9-4 14 12 11 23 12 18 12 12

13.5 West Virginia 9-3 18 18 16 15 18 15 18 17

0 Avg. Abs. Diff. 2.03 2.17 2.03 3.10 2.43 1.67 1.97 2.10

*Note: Rankings of all models were adjusted to exclude Alabama which was on probation in 2002 and consequently not ranked by the

Coaches Poll or the BCS.
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Table 8: Summary of Average Absolute Differences for all BCS Models

Model 1998 1999 2000 2001 2002 Average

Proposed Model (Mease) 2.47 2.77 1.00 1.90 2.03 2.03

David Rothman 1.77 1.33 3.03 2.04

Herman Mathews 2.50 0.87 3.10 2.16

Wes Colley 2.30 2.03 2.17

Kenneth Massey 1.30 2.33 3.03 2.43 2.27

Anderson/Hester 2.33 2.83 1.60 2.70 2.17 2.33

Peter Wolfe 2.90 2.10 2.50

Richard Billingsley 3.10 2.33 1.57 3.10 2.53

Jeff Sagarin 3.07 1.57 2.47 3.63 1.97 2.54

New York Times 3.80 2.43 2.73 1.67 2.66

Dunkel 2.90 4.33 3.62

8. POSSIBLE MODIFICATIONS TO THE MODEL

Although the purpose of this paper is to present a model that performs well using only

win/loss data, the model in fact can be easily adapted to incorporate other available informa-

tion such as the location of the game, the date of the game, and even the margin of victory if

so desired.

The location of each game played is almost always on the campus of one of the two com-

peting teams. This team is called the “home team” and is thought to generally have an extra

advantage due to crowd support and a number of other factors. This “home-field” advantage

can be incorporated into the model by replacing θi − θj by θi − θj + λ if team i is the home

team or by θi − θj − λ if team j is the home team. The likelihood can then be maximized

over this single home-field advantage parameter λ along with θ. The teams can be ranked

based on their respective values of θi as before. The model considered by Harville (1977, 2003)

uses an analogous single parameter to capture the home-field advantage. Alternatively, one

can consider a separate home-field advantage parameter for each team as is done by Harville

and Smith (1994) for college basketball teams. While this model is more flexible and may in

fact be more realistic, it is not as useful for ranking teams since it will generally result in two

different ranks for each team depending on whether the teams are ranked with their home-field

advantage included or not.

In addition to the location of the games, it is sometimes suggested that the date of the

games should be considered when ranking the teams. Specifically, some feel that games that

occur later in the season should be weighed more heavily in the final rankings than games
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that occur earlier in the season. One method for doing this in the proposed model would be

to incorporate these weights into the values of nij . As a simple example, if the games in the

second half of the season were thought to be twice as important as the games in the first half,

one could double the nij values for all games occurring in the second half of the seasons. Note

that in general if one scales the weights for the games such that they are integers, the model

can still easily be fit using standard software as described in Section 6. The only necessary

change would be to create replicate lines for some entries in the input matrix to reflect these

weights, analogous to the method for dealing with tie games described earlier.

Similar to weighting games based on date, games could also be weighted based on some

measure of difference in the final score. That is, the nij values could be used to account for

margin of victory. Again, by scaling the weights to be integers, standard software can still be

used to fit the model. Careful selection of the nij may produce a model which agrees even

more strongly with the polls by giving more weight to large victories (as some suggest that

human pollsters do) but not to the large extent that previous models have done.

A final possible modification to the model is to replace the normal CDF function Φ by

some other function. The logit CDF function is one possible alternative that still allows for

the model to be fit using standard software. Although the logit CDF and normal CDF have

quite different tail behavior, the use of the logit CDF function did not affect the resulting

rankings substantially for the football seasons considered.

9. SUMMARY

We have described a penalized maximum likelihood model for ranking college football teams

independent of victory margins. By analyzing resulting rankings from actual college football

seasons we have shown that the model on average agrees more strongly with the AP and

Coaches Polls than many of the more complex models discussed in the statistics literature and

used by the BCS. We have shown that the model can be implemented using binary response

regression procedures available in most standard statistics software packages.

While no one model for ranking teams is necessarily “better” than any other model, the

proposed model has many attractive features. Its strong agreement with the AP and Coaches

polls suggests that it is consistent with popular/expert opinion, while at the same is free

from the problems of personal bias and limited memory inherent in human polls. Secondly,

the model ignores all factors other than wins and losses and is simple in form, suggesting a

parsimonious solution to the problem of ranking college football teams. Finally, the model is

motivated by statistical theory and can be fit using standard statistical software.
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